
From Bulb to C#

Adam Furmanek

About me

Software Engineer, Blogger, Book
Writer, Public Speaker.
Author of Applied Integer Linear
Programming and .NET Internals
Cookbook.

http://blog.adamfurmanek.pl

contact@adamfurmanek.pl

furmanekadam

18.10.2022 FROM BULB TO C# - ADAM FURMANEK 3

http://blog.adamfurmanek.pl/
mailto:contact@adamfurmanek.pl
https://twitter.com/furmanekadam

Agenda
Bulb — it's all we need.

From bulbs to semiconductors.

Computer architecture.
◦ It's all a bunch of bytes
◦ Von Neumann, Harvard

CPU architecture.
◦ CISC, RISC, EPIC and others
◦ x86 and a bit of history

Codes:
◦ Microcode, machine code, assembly.
◦ Operating System level code.
◦ User mode code.
◦ Managed code.
◦ Aaand C#.

18.10.2022 FROM BULB TO C# - ADAM FURMANEK 4

Bulb — it's all we need

18.10.2022 FROM BULB TO C# - ADAM FURMANEK 5

Bulb

18.10.2022 FROM BULB TO C# - ADAM FURMANEK 6

How to communicate?

18.10.2022 FROM BULB TO C# - ADAM FURMANEK 7

How to communicate?

18.10.2022 FROM BULB TO C# - ADAM FURMANEK 8

Telegraph

18.10.2022 FROM BULB TO C# - ADAM FURMANEK 9

Boolean Logic
Operation Function Symbols

Conjunction AND &&

Disjunction OR ||

Negation NOT ~

Exclusive Or XOR ^

Not AND NAND

Not OR NOR

18.10.2022 FROM BULB TO C# - ADAM FURMANEK 10

AND

18.10.2022 FROM BULB TO C# - ADAM FURMANEK 11

OR

18.10.2022 FROM BULB TO C# - ADAM FURMANEK 12

NOT (inverter)

18.10.2022 FROM BULB TO C# - ADAM FURMANEK 13

Others

18.10.2022 FROM BULB TO C# - ADAM FURMANEK 14

NOR XOR NAND

Half Adder

18.10.2022 FROM BULB TO C# - ADAM FURMANEK 15

Full Adder

18.10.2022 FROM BULB TO C# - ADAM FURMANEK 16

Oscillator

18.10.2022 FROM BULB TO C# - ADAM FURMANEK 17

Oscillator

18.10.2022 FROM BULB TO C# - ADAM FURMANEK 18

Reset-Set (RS) Flip-Flop

18.10.2022 FROM BULB TO C# - ADAM FURMANEK 19

Reset-Set (RS) Flip-Flop

FROM BULB TO C# - ADAM FURMANEK18.10.2022 20

Level-triggered Data-type Flip-Flop

18.10.2022 FROM BULB TO C# - ADAM FURMANEK 21

Multibit latch

18.10.2022 FROM BULB TO C# - ADAM FURMANEK 22

3-to-8 Decoder

18.10.2022 FROM BULB TO C# - ADAM FURMANEK 23

18.10.2022 FROM BULB TO C# - ADAM FURMANEK 24

Computer

18.10.2022 FROM BULB TO C# - ADAM FURMANEK 25

From bulbs to
semiconductors

18.10.2022 FROM BULB TO C# - ADAM FURMANEK 26

It’s all about physics
Conductors

◦ Very conducive to the passage of electricity

◦ Copper, silver, gold

◦ Technically we can „kick” the lone electron out so it’s free to move

Insulators
◦ Barely conduct electricity

◦ Rubber, plastic

Semiconductors
◦ Not because they conduct half as well as conductors but because their conductance can be manipulated

◦ Can be doped – combined with certain impurities

◦ Pure semiconductors aren’t good conductors

18.10.2022 FROM BULB TO C# - ADAM FURMANEK 27

NPN transistor
Small voltage on the base can control a much
larger voltage passing from the collector to the
emitter.

Invented by William Shockley, John Bardeen and
Walter Brattain in 1947.

18.10.2022 FROM BULB TO C# - ADAM FURMANEK 28

Gates with transistors

18.10.2022 FROM BULB TO C# - ADAM FURMANEK 29

Is it easier to make computer with
transistors?
Pros

◦ We can fit many more transistors in smaller space

◦ They are much stabler than other solutions (like vacuum tubes)

◦ We can build blocks of transistors (chips) doing well-known things (like half adder)

Cons
◦ We still have to worry about interconnections

◦ The smaller the connections the more heat we get

18.10.2022 FROM BULB TO C# - ADAM FURMANEK 30

Integrated Circuit
Commonly called the chip.

Manufactured through a complex proces of layering thin wafers of silicon that are precisely
doped.

It’s expensive to develop a new integrated circuit but it’s cheap when they are mass produced.

Different technologies to build ICs — Transistor-Transistor Logic (TTL) and Complementary
Metal-Oxide Semiconductor (CMOS).

By building more and more sophisticated blocks we end up with System On Chip (SOC).

18.10.2022 FROM BULB TO C# - ADAM FURMANEK 31

Computer architecture

18.10.2022 FROM BULB TO C# - ADAM FURMANEK 32

Computer
CPU.

RAM.

Some way of getting instructions into RAM (input device).

Some way of showing results (output device).

Non-volatile memory (storage).

All these elements must communicate! How do we put them together?

18.10.2022 FROM BULB TO C# - ADAM FURMANEK 33

Bus
All integrated circuits are mounted on circuit boards.

These boards must communicate and they do that with a bus.

Bus is a collection of digital signals:
◦ Address signals – to address the memory

◦ Data Output signals from the CPU

◦ Data Input signals to the CPU

◦ Control signals – to coordinate actions (e.g. indicate that CPU wants to write)

18.10.2022 FROM BULB TO C# - ADAM FURMANEK 34

Bus
Just like CPU has manual so devices know how to talk to it, the same way bus can be
standardized.

Industry Standard Architecture – designed by IBM for the original PC.

S-100 bus for the 8080 chip.

Micro Channel Architecture (MCA) bus.

IIC designed by Philips.

18.10.2022 FROM BULB TO C# - ADAM FURMANEK 35

Von Neumann architecture (Princeton)
Data and instructions are both stored in the
primary storage.

Instructions are fetched from the memory one
at a time.

Processor decodes the instruction and
executes it.

18.10.2022 FROM BULB TO C# - ADAM FURMANEK 36

Other architectures
Harvard architecture

◦ One dedicated set of addresses and data buses for memory access, another one for instructions (so
data and instructions are separate)

◦ Can be faster since it can access both of them at the same time

◦ Distinct code and data address spaces

Modified Harvard architecture
◦ Caches for instruction and data, sharing the same address space

◦ Allows treating instructions as a read-only data

The computer you have is conceptually a von Neumann architecture but technically a modified
Harvard architecture.

18.10.2022 FROM BULB TO C# - ADAM FURMANEK 37

CPU architecture

18.10.2022 FROM BULB TO C# - ADAM FURMANEK 38

CPU architecture
Term reused in many contexts.

Instruction set architecture (ISA) – a design of physical instructions the CPU is capable of
executing.

Microarchitecture (computer organization) – the way a given ISA is implemented.

Specifies how a CPU works – what is the cycle, what is the pipeline, how are instructions ordered
etc.

Many other things – endianess, register length, addressing, security, programming model etc.

18.10.2022 FROM BULB TO C# - ADAM FURMANEK 39

Instruction Set Architecture
Defines

◦ Supported data types

◦ Registers

◦ Hardware for managing memory

◦ Memory consistency, addressing, virtual memory

◦ Memory model

Typically classified by architectural complexity.

18.10.2022 FROM BULB TO C# - ADAM FURMANEK 40

ISA
Complex Instruction Set Computer (CISC)

◦ Many specialized instructions

◦ Allows to „do more” with „less”

◦ Instructions can vary in length

◦ x86

◦ Technically often translated to the RISC by the
CPU

Reduced Instruction Set Computer (RISC)
◦ Only frequently used instructions

◦ Other operations implemented as subroutines

◦ Much easier to execute as instructions typically
have the same structure

Other used architectures
◦ Very Long Instruction Word (VLIW)

◦ Explicitly Parallel Instruction Computing (EPIC)

Conceptual architectures (not widely used)
◦ Minimal Instruction Set Computer (MISC)

◦ One Instruction Set Computer (OISC)

ISA specifies instruction encoding, length,
parameters, etc

18.10.2022 FROM BULB TO C# - ADAM FURMANEK 41

IBM PC
In 1974, Intel produced the 8080 – 8-bit microprocessor. Later used in Altair 8000 which was the
first home computer.

In 1976, Intel produced the 8085 – 8-bit microprocessor, fully compatible with 8080. Smaller
than the predecessor.

In 1978, Intel produced the 8086 – 16-bit microprocessor able to access 1MB of memory. It
wasn’t compatible with 8080.

In 1979, Intel produced the 8088 – identical to 8086 but externally accessed memory in bytes so
could use chips designed for 8080.

8088 was used in 5150 Personal Computer – the IBM PC.

18.10.2022 FROM BULB TO C# - ADAM FURMANEK 42

x86 and AMD64
x86

◦ 16-bit CISC architecture.

◦ Backwards compatible with 8-bit one

x86-32 (IA32)
◦ 32-bit extension of x86 architecture

◦ Introduced in 80386 CPU

◦ Has a compatibility mode with x86 (so you can run old applications)

◦ Introduced MMX and SSE

x86-64 (AMD64 or Intel 64 or EM64T)
◦ Developed by AMD after Intel failed with their IA64 architecture

◦ Compatible with x86 architecture, capable of running 32-bit applications.

18.10.2022 FROM BULB TO C# - ADAM FURMANEK 43

SSE and others
Typical CPU instructions are „simple”

◦ Calculations: MOV, ADD, SUB

◦ Control: JMP, CALL, RET

◦ Comparisons: CMP

CISC allows to run much more with „one” instruction
◦ Add 512 bits at once

◦ Compare strings (arrays of bytes)

◦ Encrypt using AES

They are introduced using extensions: MMX, SSE, SSE2, AVX

If a CPU doesn’t support them, they will be emulated with reduced performance.

18.10.2022 FROM BULB TO C# - ADAM FURMANEK 44

Codes

18.10.2022 FROM BULB TO C# - ADAM FURMANEK 45

Microcode
Sits one level below the machine code.

Can be used to emulate operations which are not done in the hardware.

x86 translates CISC instructions into a series of micro-operations. This is hardwired for most
instructions but for some rarely used it’s done in a microcode.

Not portable, very coupled with the CPU it’s running on.

Updated via UEFI/BIOS updates or regular system updates.

Runs in the CPU directly, not accessible to the „regular” programmer.

18.10.2022 FROM BULB TO C# - ADAM FURMANEK 46

Machine code
The one which we „implemented” with bulbs.

Hard to read, rarely written by hand.

Instructions of different lengths.

Instructions encoded as numbers with endianess in mind.

Executed by the CPU directly. Accessible to the „regular” programmer in either kernel or user
mode.

18.10.2022 FROM BULB TO C# - ADAM FURMANEK 47

Assembly language
Readable from of machine code.

One assembly instruction may represent multiple different machine instructions
◦ MOV in assembly is translated to different moves depending on the arguments

Exposes memory and computer architecture to the programmer.

Assembled by the assembler and then linked into executable.

Accessible to the „regular” programmer in either user or kernel mode.

18.10.2022 FROM BULB TO C# - ADAM FURMANEK 48

Operating System language
The API exposed by the operating system

◦ WinAPI

◦ System V

◦ POSIX

Provides functions for the device management and OS configuration.

Accessible to the „regular” programmer in either kernel mode (drivers) or user mode (regular
applications).

18.10.2022 FROM BULB TO C# - ADAM FURMANEK 49

User vs Kernel mode
CPU must control who can access peripherals.

Typically introduces a notion of Rings
◦ Ring 0 (kernel mode) is a lowest level where all CPU instructions can be executed and all devices are

accessible

◦ Ring 3 (user mode) is a highest level where memory access is limited, devices are not accessible

Operating System runs in Ring 0 and switches to Ring 3 to execute user applications.

Rings 1 and 2 not used. Sometimes virtualization hypervisors use Ring 1 to increase
performance.

Stack is provided by the CPU and is one per Ring. Heap is provided by the operating system (or
implemented in user mode enitrely).

18.10.2022 FROM BULB TO C# - ADAM FURMANEK 50

User mode native applications
„Native” applications can be implemented in any „native language”

◦ Typically some high level languages are used like C++

Can be also written using assembler or generated directly as a machine code.

They don’t have access to the peripherals, they need to ask Operating System to do the job.

OS then enters the kernel mode by calling special CPU instructions.

18.10.2022 FROM BULB TO C# - ADAM FURMANEK 51

Managed applications
To increase the portability of the code, we introduce another platform on top of the native user
mode

◦ JVM

◦ CLR

◦ Web browser

◦ Python or other runtimes

They typically don’t use the OS functions directly. Instead they call manager wrappers exposed
by the platform.

Direct access is possible and is called „interop”.

18.10.2022 FROM BULB TO C# - ADAM FURMANEK 52

Managed languages
To increase portability, manager platforms use their own languages. Byte code in JVM,
Intermediate Language in CLR.

That language is typically compiled to the machine code using Just In Time compiler.

Platform makes sure the application is „correct” – all memory accesses are verified, pointers are
avoided, exceptions in place of physical segfaults.

We can write in managed languages directly or generate them from higher level languages.

18.10.2022 FROM BULB TO C# - ADAM FURMANEK 53

High level managed language
C#, Java, other languages translated into some intermediate form.

Typically portable.

Most of the times are not aware of the quirks of the platform they run on.

Compiled to the lower level managed languages by the compiler as a part of application
development.

18.10.2022 FROM BULB TO C# - ADAM FURMANEK 54

So how does it work?
1. We write application in high level managed language.

2. Code is compiled by the compiler to the low level managed language.

3. Platform runs the code by compiling it with a Just In Time compiler. We now have a machine code
running in the user space.

4. Machine code calls Operating System functions. They are written in high level native code mostly
or assembly.

5. High level native code (or assembly) is compiled to the machine code running in kernel space.

6. Machine code is then fetched by the CPU and translated to the microoperations using microcode.

7. Microoperations are physically executed by the transistors. The same things we did with bulbs are
executed billion times each second.

18.10.2022 FROM BULB TO C# - ADAM FURMANEK 55

Summary
Computer is a relatively simple concept. What is hard is how to have a great speed of execution
and development.

It took us long time to build standards. Same way like now we have multiple languages, we had
mutliple incompatible CPUs years back.

Machine code is not the lowest level. Sometimes it’s not even close.

18.10.2022 FROM BULB TO C# - ADAM FURMANEK 56

Q&A

18.10.2022 FROM BULB TO C# - ADAM FURMANEK 57

References
https://www.youtube.com/watch?v=CQtSS6g00h0 – How Transistors Work

https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html - Intel
64 and IA-32 Architectures Software Developer Manuals

https://fawzi.wordpress.com/2009/05/24/virtualization-and-protection-rings-welcome-to-ring-
1-part-ii/ - Ring -1 for virtualization

„Code: The Hidden Language of Computer Hardware and Software” by Charles Petzold

18.10.2022 FROM BULB TO C# - ADAM FURMANEK 58

https://www.youtube.com/watch?v=CQtSS6g00h0
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://fawzi.wordpress.com/2009/05/24/virtualization-and-protection-rings-welcome-to-ring-1-part-ii/

Thanks!
CONTACT@ADAMFURMANEK.PL

HT TP://BLOG.ADAMFURMANEK.PL

FURMANEKADAM

18.10.2022 FROM BULB TO C# - ADAM FURMANEK 61

http://blog.adamfurmanek.pl/
https://twitter.com/furmanekadam

