—

V NET
{(DEVELOPER

DAYS

Adam Furmanek

Locks are tricky

Event Sponsors

Strategic Sponsors

Demant avanade

Gold Sponsors

HRelativity ProDataConsult

@medus HKMD

An NEC Company

About me

Software Engineer, Blogger, Book
Writer, Public Speaker.

Author of Applied Integer Linear
Programming and .NET Internals
Cookbook.

http://blog.adamfurmanek.pl

contact@adamfurmanek.pl
4 furmanekadam Random IT Utensils

IT, operating systems, maths, and more

http://blog.adamfurmanek.pl/
mailto:contact@adamfurmanek.pl
https://twitter.com/furmanekadam

Agenda

General concepts.
Real life scenarios.

Algorithms.

Custom implementations.

Summary.

16.10.2022

LOCKS ARE TRICKY - ADAM FURMANEK

General concepts

Concurrency vs Parallelism

CONCURRENCY

PARALLELISM

Ability to decompose an application into
multiple parts.

Each part can be executed out-of-ordern
without affecting the final outcome.

Think of controling an access to a resource.

Concurrent execution is possible on a single-
core machine.

Ability to execute multiple things at once.

Requires multiple execution units.

16.10.2022

LOCKS ARE TRICKY - ADAM FURMANEK

Examples

Parallel Not Parallel

True concurrent code Single core with

Concurrent : : L
with multiple cores context switching

Not Concurrent Bit level parallelism Batch processing

16.10.2022 LOCKS ARE TRICKY - ADAM FURMANEK 7

Shared memory vs Message passing

SHARED MEMORY

MESSAGE PASSING

When multiple execution units
access the same physical memory.

Prone to word tearing, false

sharing.

Requires critical sections or test-
and-set operations.

Cannot be used between machines.

Can be faster.

When multiple execution units send
messages to each other.

Requires some way means Of
communication — like storage,
queue etc.

Can be used between machines.

Typically slower.

16.10.2022

LOCKS ARE TRICKY - ADAM FURMANEK

Shared memory issues

Lost write
o variable++

Word tearing
> When we cannot access a single element and need to write multiple of them at once (like with bitset)

Atomic write
o When we cannot write a particular value at once (like with 64-bit variables on a 32-bit CPU)

How can we deal with this?

16.10.2022 LOCKS ARE TRICKY - ADAM FURMANEK

Critical section

Code which can be executed by one execution unit at a
time.

Cannot be parallelized.
Should finish in a finite time.
Should be as small as possible.

What do we do if a process dies while executing a critical
section?

Mutex

Name comes from Mutual Exclusion.

Can be implemented with disabling interrupts in a single-processor
system.

Requires some atomic operation a multi-processor system like test-and-
set or compare-and-swap.

Can be implemented in the kernel or user mode.
Typically provded by the operating system.

Can be locked and unlocked only by the owner.
Typcially can be taken recursively.

LOCKS ARE TRICKY - ADAM FURMANEK 11

16.10.2022

Mutex

WINDOWS LINUX
WinAPI: POSIX Threads (pthread):
| o pthread_mutex_init
> CreateMutex > pthread_mutex_lock
- WaitForSingleObject ° pthread_mutex_unlock

> ReleaseMutex
Mostly implemented by Native Posix Thread

Called Mutant internally. Library (NPTL).

Other implementations exist like musl.

.NET: Mutex

16.10.2022 LOCKS ARE TRICKY - ADAM FURMANEK 12

Counting Semaphore

Counts execution units allowed to enter the section.

Two operations:
o V (increment) — comes from Dutch verhogen

o P (decrement) — comes from Dutch proberen/passeren/pakken

Can be unlocked by any thread, not only the ,,owning” ones.

What’s the difference between a binary semaphore (counting up to one) and a mutex?

LOCKS ARE TRICKY - ADAM FURMANEK 13

16.10.2022

Mutex vs Binary semaphore

MUTEX

BINARY SEMAPHORE

Can be unlocked by the owner only.
Can protect the owner from termination.

Supports priority inversion as we know who
owns the mutex.

Allows for recursion.

Can notify when it is abandoned.

Can be unlocked by anyone.

Doesn’t protect from termination as the
owner is not tracked.

Doesn’t support priority inversion as the
owner is not tracked.

Doesn’t support recursion.

Doesn’t notify when it is abandoned.

16.10.2022

LOCKS ARE TRICKY - ADAM FURMANEK 14

Counting Semaphore

WinAPI: NET:
> CreateSemaphore OSemaphore

> WaitForSingleObject _
°cSemaphoreSlim
> ReleaseSemaphore

POSIX Threads (pthread):
°csem_init
°sem_wait
° sem_post

16.10.2022 LOCKS ARE TRICKY - ADAM FURMANEK

Sleep vs Spin wait

SLEEP

SPIN WAIT

Entering the sleep mode is expensive for the
operating system

o Typically requires switching to a kernel mode

> Requires some kernel structures

Entering the slep mode is expensive for the
application
> Causes a context switch so consumes time

Doesn’t block the thread.

Cannot be done in all circumstances.

Can be done in all circumstances.

Blocks the thread so it's very CPU
consuming.

Is often used initially when we expect
the critical section to be released soon.

Very important in kernel programming.

16.10.2022

LOCKS ARE TRICKY - ADAM FURMANEK

Monitor with condition variable

for(;;)
lock (sync) 1
if {(condition) {
// Do work
break;
} else {
// Loop again - but how?

16.10.2022

Mutual exclusion is not enough. Often we
need to wait until some condition holds true.

Question remains: how do we wait for the
condition to hold?

If we don’t sleep then we hog the CPU.

If we do sleep then it’s hard to find the right
delay.

Condition variable is a set of threads waiting
for the condition to hold.

Monitor is a thread-safe construct using
mutex and condition variables to protect its
methods.

LOCKS ARE TRICKY - ADAM FURMANEK 17

Condition variable

WinAPI: .NET:
o |nitializeConditionVariable > Monitor.Pulse + Monitor.Wait
> SleepConditionVariableCS o ReaderWriterLock

o WakeConditionVariable

POSIX Threads (pthread):
o pthread _cond init

o pthread_cond_wait

o pthread_cond_signal

16.10.2022 LOCKS ARE TRICKY - ADAM FURMANEK

Spurious wake-up

We may be woken up by Monitor.PulseAll.

We may be woken up by the the driver or APC.
lock (sync) {

// This is WRONG - we need to use while We always need to use loop.
(!condition) {
Monitor.Wait(sync);

16.10.2022 LOCKS ARE TRICKY - ADAM FURMANEK

Local vs global

LOCAL LOCKS

GLOBAL LOCKS

Are held within one process only.

Are typically faster.

Can be implemented in user-mode.

Are held between processes.

Require a support from the operating system.
name. Watch for collisions!

mode.

Need to be identified somehow — typically by

Are slower due to switching to the kernel

16.10.2022

LOCKS ARE TRICKY - ADAM FURMANEK

20

Truly global locks

We need inter-machine locks.

They are typically implemented as leases with a timeout.
They must be discoverable — typically by name or some resource.

They require network communication so are much slower.

16.10.2022 LOCKS ARE TRICKY - ADAM FURMANEK 21

Issues with locks

What if a thread dies? Are we sure the data is safe?

What if it used a semaphore? How do we reset the counter? How do we get notification?
What if it was an inter-machine lock? What about timeout?

What about priority inversion?

How can we see who holds the lock?

How can we take the lock forcefully?

Always acquire a lock with a timeout!

16.10.2022

LOCKS ARE TRICKY - ADAM FURMANEK 22

Compare-and-swap

Atomically compares the contents of memory x86:
with a given value, and modifies the memory if - cMPXCHG

allowed.
ARM:
o CAS
int CompareAndSwap(ref int memory, int baseValues, int newValue) {
Lock() { Ct++:
int oldValue = memory; o atomic_compare_exchange_weak
if {oldValue == baseValue) { - - -
memory = newlalue,
, NET:

° Interlocked.CompareExchange

return oldValue;

' IVM:
o Atomiclnteger.compareAndSet

16.10.2022 LOCKS ARE TRICKY - ADAM FURMANEK 23

Real life scenarios

Finalizers

Finalizers may be executed when exiting
° This is implementation-dependent and unreliable

Finalizers may be executed in paralel. They may be locked or not.

Finalizing thread cannot run indefinitely. It will be terminated if it
takes too long.

Finalizer may be called when the variable is still being used.

16.10.2022 LOCKS ARE TRICKY - ADAM FURMANEK

var content = @"abc”;

if (args.Length > @)

{
TestFile(content);|
}
else
{

while (true)

1
Process.Start("FinalizerRaceCondition.exe”, “slave").
if (new FileInfo("@").Length - 3 > @)
{

Debugger.Launch();
Debugger.Break();
Thread.5leep(100000000) ;
}
Thread.Sleep(1);
}
h
h
static bool TestFile(string content)
1
var threadl = new Thread(() =»
{

Write(content);
Thread.Yield();
1
var thread2 = new Thread(() => Environment.Exit(1));
threadl.Start();
thread2.5tart();

return true;

WaitForExit();

B C\Afish\Debug\FinalizerRaceCondition.exe =

Visual Studio Just-In-Time Debugger

An unhandled Microsoft \MET Framewark exception occurred in
FinalizerRaceCondition.exe [19708].

Possible Debuggers:

[|set the currently selected debugger as the default.

[|Manually choose the debugging engines.

Do you want to debug using the selected debugger?

Yes MNa

=

var content = @"abc";
if (args. !_Eﬂgth > 8) B ChUsers\afish'\Desktophmsp_windowsinternals\FinalizerRaceCondition\bin\Debug\FinalizerRac... — O x
Te;t’ﬁj(ccntentjﬂ Unhandled Exception: System.InvalidOperationException: You must call Initialize on
this objec nstance befor ing it.
else ' .Runtime.InteropServices.SafeBuffer.get Bytelength()
) i .Runtime.InteropSer .SateHeapHandle.ReleaseHandle(
{ ; Runtime.InteropSer .SafteHandle.InternalFinalize()
. P _
while (true) i .Runtime.InteropsSe .SafeHandle.Dispose(Boolean disposing)
{ i] .Runtime.Interopsery .SateHandle.Finalize()
Start("FinalizerRaceCondition.exe”, "slave™).WaitForExit();
if (new FileInfo("@").Length - 3 > @)
{
r.Launch();
gger.Break();
id.Sleep (100000000 ;
1

d.Sleep(l);

static bool TestFile(string content)

{

var threadl = new Thread(() =>
{
Write(content);
d.Yield();
1)
var thread2 = new Thread(() => Environment.Exit(1));

threadl.Start();
thread2.Start();

return true;

if (args.Length > @)

1
HijackMethod [
typeof(File bethod("WriterileNative”
typeof(F od{namect (Hijacked), B
cstF___(ccrtentn
}
else
1
while {true)
var process = Process.Start{new F tT
{
Arguments = “slave”,
RedirectStandardoutput = trus,
FileName = "FinalizerRaceCondition.exe”,
UseshellExecute = false,
CreatedoWindow = false
Windowstyle = F indowstyle.Normal
i
process.Waitrorexit(};
var output = process.Standardoutput.readToEnd();
if (mew FileInfo("e"}.Length - 2 > @ || !string.Ishullorempty(output))
1
}
¥
public unsafe int Hijacked(safeFileHandle » byte[] , Int , Int
{
if (stacktrace != null)
1
stacktrace");
r.StackT rahe\
iriteLine ”ﬂ+IE| stacktrace™);
Console.WriteLine(stacktrace);
}
Envirenment.stackTrace;
0 H
hr = 8;
return 3;

eption e,

Boolean needFileInfo)
vironment.get S
at FinalizerR ondition.Pr
rlapped, Int hr)
tem.I0.FileStream.WriteCore(' ; Ff nt3:

rstem. I0.FileStream. Flushi
rstem.I0.FileStream. Di'pDRE'-uuleaH dl_pu:lnu_
stem. ID FileStream.Finalize()

feFileHandle handle, Byte[] bytes, Int3: ount, MNativeOverlapped* ove

count)

eption e, Boolean needFilelInfo)

count, NativeOverlapped* ove
% hr) nsp_windowsinternals!
.I0.FileStream (yte[] bu++Er. Int32 offset, I
.I0.FileStream. nalBuffer
.I0.FileStream.
.I0.FileStream.Flush
.IU.StPeaeritEP.Flushu.Dulean +lu~h1fream
.I0.Streambriter.Disp)

count)

Boolean flushEncoder)

sp_windowsinternals\FinalizerRaceCondition\Pr

sers\afish\Desktop\msp windowsinternals\Finalizer

tem.Threading.ThreadHelper.ThreadStart Contex
tem. Threading . ExecutionContext.RunInternal(

cutionContext, ContextCallback callback, Object state, Bool
ng.ExecutionContext.Run{ExecutionContext executionContext, ContextCallback callback, Object state, Boolean pres

cutionContext executionContext, ContextCallback callback, Object

Common wrong pattern:
Acquire outside of try

First, take the lock.

Acquirelock();
Then, enter the try block. :>try
Release the lock in finally. { /)
But what if there was something 1
wrong between acquiring the lock and finally
entering the try block? {
Releaselock();

¥

Common wrong pattern:
double-checked-lock

Invalid, because helper may be already set, class Foo {
but new Helper() may be still running (due to private Helper helper;
. public Helper getHelper() {
memory reordering). if (helper —= null) {
. synchronized (this) {
Use: if (helper —- null) {
o VarHandle (JVM) helper = new Helper();
> Lazy (.NET) } I
o call_once (C++) by

return helper;

h

LOCKS ARE TRICKY - ADAM FURMANEK 30

16.10.2022

Heap lock

Multiple malloc implementations lock the heap when allocating
memory.

So there can be a lock taken when calling new object().

If a thread dies for any reason — the lock is abandoned, and the heap
may be broken.

Don’t kill threads! Don’t suspend threads!

LOCKS ARE TRICKY - ADAM FURMANEK 31

16.10.2022

DLLMain lock

When a new module is loaded into the process, a
lock is taken.

DLLMain function is effectively executed in a critical
section.

This often leads to deadlocks. Especially when doing
a dll-injection.

fork without exec

When you fork a proces, only the calling thread runs in the
child.

If some other thread held a lock, the lock remains locked
forever.

fork without exec is popular for multiprocessing libraries.
Always use fork + exec in your code.

Never call anything between fork and exec. Even malloc can
cause a deadlock.

Mukiple
N Exclusive
A P (Acquires?

Asynchronous Procedure Call is a
mechanism to deliver a message to a
thread.

When taking a lock (like mutex), we need
to disable APC. Otherwise, we risk a

deadlock.
However, different locking primitives 4 A
disable different APC types. Sensitivity?

Asynchronous 1/O may use APC for
delivering a result. But it may also use
/O completion port. Make sure you wait
on a correct primitve.

Message pump is not an alertable state,
and doesn’t proces APCs.

Ca a a a ! onizaio i
Cache-Aware Push Lock Fast/Guarded Synchronizaion Executive

Push Lock Mute: Bt — Standard Mutex

https://www.osr.com/nt-insider/2015-issue3/the-state-of-synchronization/

16.10.2022 LOCKS ARE TRICKY - ADAM FURMANEK

Drivers

Windows cannot risk breaking a physical device.

f there is a buggy driver, then Windows won’t try
<illing it forcefully.

f a process waits for a buggy driver then the process
cannot be killed.

You need to restart your computer to solve the issue.
Or use ProcessHacker, but it can crash the machine.

Spintypelocks

Kernel-mode locks

We may be forced to use spin-based locks
depending on the IRQL level.

Read/Write

Spin-based locks do not support recursion. Semantics?
What about reader/writer semantics?

Fairness? Contention?

In-Stack Queued Reader-Writer
SpinlLock SpinLock

https://www.osr.com/nt-insider/2015-issue3/the-state-of-synchronization/

16.10.2022 LOCKS ARE TRICKY - ADAM FURMANEK

Interrupt Request Level (IRQL)

When there is an interrupt, the operating
system maps it to the correct priority level.

Higher levels preempt lower ones.

Interesting levels:

o 0: PASSIVE_LEVEL — ,regular” one, all Windows
components are available. All synchronization

Your PC ran into a problem and needs to restart. We're just

collecting some error info, and then we'll restart for you.

primitives work 25% complete
o 2: DISPATCH_LEVEL — for DPC and some drivers,
not all components are available. Thread For more information about this issue and
scheduler runs here. Only spin locks can be used possible fixes, visit
© 12: SYNCH_LEVEL - for synchronizing data http://windows.com/stopcode
between CPUs : "
E If vou call a suooort person, aive them this info:

Stop code IRQL_NOT _LESS OR_EQUAL

16.10.2022 LOCKS ARE TRICKY - ADAM FURMANEK

MS SQL

LATCH

LOCK

Low-level locks used to maintain
the memory consistency.

Protect b-trees, heaps, pages.

Buffer latches, non-buffer
latches, 10 latches.

Cannot be controlled directly by
the user.

Used to maintain the transaction
consistency.

Can be controlled directly by the
user with query hints.

Affect results of queries — dirty|
reads, phantoms, snapshots.

What is your default isolation
level?

16.10.2022

LOCKS ARE TRICKY - ADAM FURMANEK 38

Cloud leases

Azure Blob Lease.

Azure Queue Lease.

Azure Service Bus Lock.
Zookeeper locks.

Similar idea: network timeouts.

What happens if you don’t refresh the lease?

Logical transaction locks

Ever tried buying a ticket just to see that you need to
confirm the transaction in 15 minutes?

How do we scale them?
How do we make sure that we don’t overbook?

s overbooking a problem?
What to do if one ticket can be sold by multiple vendors?

Algorithms

16.10.2022 LOCKS ARE TRICKY - ADAM FURMANEK

variables

wants to enter array of 2 booleans
turn : integer
wants to enter[0] -~ false
wants to enter([l] - false

I/ ar 1l

Dekker’s Algorithm

turn — 0

First known
algorithm.

Works for 2
processes only.

Uses busy-wait.

Requires memory
barriers or code

reordering
disabled.

16.10.2022

pl:

wants to enter[0] ~ true
while wants to enter[l] {
if turn # 0 {
wants to enter[0] -~ false
while turn # 0 {
[/ busy wait
}

wants to enter[0] -~ true

1
J// critical section
turn ~ 1

wants to enter[0] -~ false
J// remainder section

pl:
wants to enter[l] - true
while wants to enter[0] {
if turn # 1 {
wants to enter[l] . false
while turn # 1 {
// busy wait

}

wants to enter[l] . true

}

J/ critical section

turn ~ 0
wants to enter[l] . false
J/ remainder section

LOCKS ARE TRICKY - ADAM FURMANEK

42

Peterson’s algorithm

Works for N processes.

level : array of N integers

Requires memory barriers or code last to enter : array of N — 1 integers
reordering disabled. - =
i «~ ProcessNo
for { from 0 to W - 1 exclusive
. level[i] — ¢
There are other algorithms: T e
Szymaﬁski's’ Lamport's bakery’ while last to enter[!{] = i and there exists k # i, such that level[k] = {

walt

Eisenberg & McGuire etc. They _
have favorable properties like — |[*7 -1
fairness, linear wait etc.

16.10.2022 LOCKS ARE TRICKY - ADAM FURMANEK 43

variables
inputQueue = [id : Messagelds, dupId : Duplds],
store = [history |-» <<»», ver |-> @, tx |- NULL],

outbox = [r “in MessageIds |-> NULL],
OW 1O reason apou cutsorstageing - T \in T 1> WAL
output = { },
locks:

processed = { }

define

InputMessages == [id : Messagelds, dupId : Duplds]

I\/Iultiple rT1()(j€E|SZ Dutputhes?ages == [msgld : Messagelds, ver : VersionIds]
Typelnvariant ==
o Pet” nets /% inputQueue YWin SUBSET InputMessages
. i S output hin SUBSET QutputMessages
o Calculus of communicating systems (CCS) /\ processed \in SUBSET InputMessages
. . . /% store.ver “in VersionIds
> Communicating sequential processes (CSP) [tore tx \in (Telds union LY
o H‘CaICUIUS /% Range(store.history) “in SUBSET [ver : VersionIds, msgld : Messagelds]
/% Range{outbox) “in SUBSET (OutputMessages ‘wunion {MULL})
o Tuple Spaces /% Range(outboxStagging) “in SUBSET (OutputMessages ‘wunion {MULLE)
o Parallel random-access-machine (PRAM) AtMostOneStateChange ==
WA id in Messagelds : Cardinality({WithId(Range{store.history),id)) <=1
o Actor model
AtMostOneQutputMsg ==
Temporal Iogic Of aCt|OnS (TLA+): WA id in Messagelds : Cardinality(WithId(output, id)) <= 1
° Formal specification language used to design ConsistentStateAndOutput ==
concurrent and distributed systems LET InState(id) == CHOOSE x \in WithId(Range(store.history), id) : TRUE
InQutput{id) == CHOOSE x “in WithId{output, id) : TRUE
© IDE and P|USC8| Ianguage IN %4 m %in processed: Instate({m.id).ver = InQutput(m.id).ver

Safety == AtMostOneStateChange /% AtMostOneQutputMsg /' ConsistentStateAndQutput
https://github.com/exactly-once/model-checking/blob/15b007f5ce403f1e4f8bd0a52bf73abee9085570/exactly_once_none_atomic.tla

Termination == <>({/% %A self “in Processes: pc[self] = "LockInMsg"

S IsEmpty(inputQueuel)

16.10.2022 LOCKS ARE TRICKY - ADAM F

end define;

Caches and memory models

Starting with IBM 801 in 1976 CPUs have
caches.

They can be of multiple levels (L1, L2, L3) or
purpose (data, instructions).

Each read from or write to a main memory
goes to cache and only then accesses the
RAM.

Typically, each core has its own L1 cache.

We need to take care when writing to a
variable used by multiple cores concurrently —
volatile, memory barriers, cache flush.

CPU is allowed to reorder instructions — this is
called a memory model.

Compiler is allowed to do the same.

We can’t rely on a memory being read/written
in the same order as we see in the source
code.

We need to take care when using variables
outside of any synchronization primitives,
barriers, locks, etc.

16.10.2022

LOCKS ARE TRICKY - ADAM FURMANEK

MESI (Illinois) protocol

Protocol for maintaing cache coherence.

4 states:
° Modified (M)
o Exclusive (E)
> Shared (S)
° Invalid (1)

When CPU1 read data which is modified in CPU2’s cache line then we need to synchronize this
situation. Data is flushed to the main memory (that’s a great simplification but gives an idea how
it works).

volatile — this makes sure that the variable is not cached, but read directly from the memory
instead.

16.10.2022 LOCKS ARE TRICKY - ADAM FURMANEK

False sharing

using System;
using System.Diagnostica;
using System.Threading:

puklic class Program

{
pukblic static woid Main()

{

Cache consists of memory lines, for
instance 64-byte long.

When we try accessing two elements
on the same cache line then we
share the memory.

16.10.2022

var stopwatch = Stopwatch.StartHew();

int iteraticns = 100000000;
Var array = new int[l7];

Thread tl = new Thread({{) => Bun{array, 0, iteraticns));
S/ Change to 16 instead of 1
Thresd t2 = new Thread{{) => Bun{array, 1, iteraticns)):

tl.3tart{) -
t2.5tart{);
tl.Join{);
t2.Join():

atopwatch. Stop () »
Conscle.Writeline {atopwatch.Elapseddillizeconds) ;

1

3tatic wvoid Bun{int[] array, int which, int iteraticns){
for{int i=0ri<iteraticnay;++i){
array [which]++;

LOCKS ARE TRICKY - ADAM FURMANEK

Loop interchange

Both code snippets do the same.

for i from © to 10 for j from @ to 20
for j from @ to 20 They access elements in different order. for i from @ to 10
a[i,j] =1+ 3] a[i,j] =1+ 7]

Which one is better — depends on your
Row-major order language! |
~ J _ sUag Column-mayjor order
3 Row-major is better in C. Column-major is " 84, &5 &g |
3 better in FORTRAN. 1 o/ s
3 .
- - It’s all about caching. a4y 5 3 |

16.10.2022 LOCKS ARE TRICKY - ADAM FURMANEK

Matrix multiplication:
jk vs ik]

for (int i = @; 1 < n; i++) { for (int 1 = @; 1 < n; i++) {
The Ord_er matte_rs When for (int j = ©@; j < n; j++) { for (int k = 8; k < n; k++) {
we multiply matrixes. for (int k = @; k < n; k++) { for (int j = @; j < n; j++) {
C[i1[3] += A[i][k] * B[K]I[]]; C[i][j] += A[i][k] * B[KI[31;
It’s typically assumed that } J
. . } }
ijk order (snippet on the ; }

left) is slower. '

ikj order is faster because

for (int 1 = ©; i < n; 1i++) {

the Compiler can for (int k = @; k < n; k++) {
optimize the code. int temp = A[i][k];
for (int j = ©; j < n; j++) {
It’s all about caching. C[21[3] += temp * BK][J];
¥

16.10.2022 LOCKS ARE TRICKY - ADAM FURMANEK

Producer-consumer

BlockingCollection in .NET.
Task.Run in .NET.
ExecutorService in Java.
Scatter + Gather in MPI.
Barrier in MPI.

Generally — avoid building those primitives by hand.

Other solutions

OpenMP: Actors:
o A library for multi-platform shared memory o Actor has an interface and messaging

programming capabilities

_}nt main (void) o AkkaNET
$pragma omp parallel ?
printf("Hello, world.\n"); AgentS.
return 0; .

) > Can observe the environment

o Agents.NET

MPI:
o Standard for passing messages

° MPI_Send, MPI_Recv, MPI_Scatter, MPI|_Barrier : :
o Supports multiple apartments for threading
° MPLNET (STA, MTA, NA)

COM:
o Binary interface for software components

16.10.2022 LOCKS ARE TRICKY - ADAM FURMANEK

Lock free code

Avoid locks and use test-and-set, compare-
and-swap, or interlocked operations.

Multiple problems like ABA, memory
reordering, starvation etc.

Typical approach is based on moving a single
step — instead of fixing the whole data
structure, we adjust it by just a bit at a time.

Requires memory barriers.

https://preshing.com/20120612/an-introduction-to-lock-free-programming/

16.10.2022

LOCKS ARE TRICKY -

ADAM FURMANEK

It's lock-free

programming

Things are easier
to implement, but
probably slower

v

Are there
multiple
writers?

“

You may need
atormic RWW
reagd - instructions

e, Jaga walakile
or Carll default
Yag | ademic tupes

v

Is there
tﬂre Lty Yes sequential
argeting —_— q!
multicore? consistency?
of anu
sumemekris
rrulk i pracessor

Ma eq. CH++1l atemic
tupes with fow-level

You may need censtraints, er

3 F7em
'::ksl t

Is there a
CAS

loop?
Cbmpm‘t -

nnl-ﬁum?

“l

Watch out
for the ABA
problem

a full memory plain C/Ca+
fence somewhera
T You may need
Mea | barriers or

access semantics
to anferce

Are there memory arder :mg_
producers and 4
CONSUMErs
only?

"r’esl

Acquire and Wil it
release semantics —» Only run on
are sufficient *Bh/047
eq. Tet F.1I.1
LAY

“

You might get
away with being
a bit sloppy

What about async?

It’s not about concurrency nor parallelism. It’s about optimizing the
resource usage under the hood.

It may spawn additional threads, but can also use one thread for all
code blocks.

Code may migrate between threads, so there is no proper locks
semantic.

Typically implemented as a coroutine transformation (C#, IS,
Python), but can be implemented as green threads as well (JVM).

16.10.2022 LOCKS ARE TRICKY - ADAM FURMANEK 53

Lock in async

1 using System;

2 using System.Threading.Tasks;

3 using System.Threading;

4

5 public class Program

6 {

7 public static void Main()

8 {

9 Test().Wait();

10 }

11

12 public static async Task Test(){

13 var o = new object();

14 lock(o){

15 Console.WritelLine(Thread.CurrentThread.ManagedThreadId);
Q s await Task.Delay(169);

17 Console.WritelLine(Thread.CurrentThread.ManagedThreadId);

18 }

19 }

20 }

21

Compilation error (line 16, col 4): The 'await' operator cannot be used in the body of a lock statement

16.10.2022

1 using System;
2 using System.Threading.Tasks;
2 using System.Threading;
4
5 public class Program
6 {
7 public static void Main()
8 {
9 Test().Wait();
10 }
11
12 public static async Task Test(){
13 var o = new object();
14 bool taken = false;
15 try{
16 Monitor.Enter(o, ref taken);
17 Console.WritelLine(Thread.CurrentThread.ManagedThreadlId);
18 await Task.Delay(160);
19 Console.WritelLine(Thread.CurrentThread.ManagedThreadId);
20 }finally{
21 if(taken){
22 Monitor.Exit(o);
23 }
s W, | hl

1
4
Unhandled exception. System.AggregateException: One or more errors occurred. (Object synchronization method was called from an unsynchronized block of code.)
---> System.Threading.SynchronizationLockException: Object synchronization method was called from an unsynchronized block of code.
at System.Threading.Monitor.Exit(Object obj)
at Program.Test()
--- End of inner exception stack trace ---
at System.Threading.Tasks.Task.Wait(Int32 millisecondsTimeout, CancellationToken cancellationToken)
at System.Threading.Tasks.Task.Wait()
at Program.Main()
Command terminated by signal 6

16.10.2022 LOCKS ARE TRICKY - ADAM FURMANEK

Reentrant recursive
async lock

Reentrant recursive async lock
is possible but the reasoning
about it is much harder.

await Operation().Configurelwait({false);

Rule of thumb: replace all your
awaits with threads and see if
it deadlocks.

class Asynclock : IAsyncDisposable {
private object locker = new object();
private string path = "";
private AsynclLocal<string= contextPath;
private Random random = new Random():

private List<TaskCompletionSource: waiters = new List<TaskCompletionSources():

public AsyncLock()<{
contextPath = new Asynclocal<string=();
contextPath _value = "";

1

public Task<IAsyncDisposable= LockAsync(J{
bool taken = false;
TaskCompletionSource waiter = null;

while{taken){
lock({locker){

char nextCharacter = (char)({(int)"a' + random.MNext('z' - 'a'));

if{contextPath_Value == path){
path = path + nextCharacter;
contextPath Value = path;
taken = true;

telsed
waiter = new TaskCompletionSource{TaskCreationOptions RunContinuationsAsynchronously);
waiters Add{waiter);

:

if(1taken && waiter = null){
return waiter.Task.ContinueWith(t => LockAsync())_Result;

)
1
return Task.FromResult({(IAsyncDisposable)this);
I
public ValueTask DisposeAsync (){
lock{locker){
if(path.Length = 1){
path = "";
lelse{

path = path.Substring(@, path_Length - 1);
)

contextPath.Value = path;

foreach(var waiter in waiters){
waiter. SetResult();
1

waiters _ Clear();
Monitor_ PulseAll{locker):
1

return ValueTask.CompletedTask;

16.10.2022 LOCKS ARE TRICKY - ADAM FURMANEK

Custom
implementations

Semaphore with Mutexes

hew Semaphore(2, 2, "semaphoreName”); var mutexes = Enumerable Range(®, 2).Select(i == new Mutex(false, "mutexName" + 1)) _ToArray();

var semaphore

int id = -1;

semaphore _WaitOne(); try
Console Writeline("Acquired!™); i])
id = WaitHandle.WaitAny(mutexes);
¥
Console _ReadlLin E{::} . catch{AbandonedMutexException e)
semaphore_Release(); i

2 = " " id = e MutexIndex;
Console _WritelLine("Done™); 1

Console _Writeline("Acquired™);
Console _ReadlLine();

mutexes[id] .ReleaseMutex();

Console Writeline("Released™);

16.10.2022 LOCKS ARE TRICKY - ADAM FURMANEK

File locking

We can use files to implement a lock. new FileStream{name, FileMode.Open, FileAccess.Read, FileShare.None);

However, there is no fairness here and

S ; File file = new File("filename");
we may need to >PIN Wal.t for the FileChannel channel = new RandomAccessFile(file, "rw")_.getChannel();
access (depends on the runtime under

the hood).

May not work across file systems.

16.10.2022

LOCKS ARE TRICKY - ADAM FURMANEK 59

Mutex with ownership tracking

Windows Mutex doesn’t tell you who owns it (neither does pthread).

We want to wait for some finite amount of time and then kill the
owner because we assume it deadlocked or died.

We want to take a memory dump of the proces before killing it.

We want to be safe when it comes to access violation exceptions
which we cannot handle.

How do we know who to kill? How to implement such a lock?

16.10.2022 LOCKS ARE TRICKY - ADAM FURMANEK

Mutex with ownership tracking

We create a memory-mapped file which anyone can view.

We then perform compare-and-swap to store 64 bits: 32 bits for the process id, 32 bits for the
thread id.

When CAS fails, we look for the thread and see if it’s still alive. If it’s not then we just forcefully
clear the lock.

If the thread is alive and it held the lock for too long then we take a memory dump of it and kill
it.

We then forcefully clean the lock.

16.10.2022 LOCKS ARE TRICKY - ADAM FURMANEK

Challenges

No fairness.

Taking a memory dump is risky — it may block the process.
This is a spin-wait effectively so it hogs the CPU.
|deally we should store 128 bits of data.

It doesn’t support reentrancy.

However, it’s successfully working in production for a couple of years now but it wasn’t
scientifically verified. Consider it a proof of concept.

16.10.2022 LOCKS ARE TRICKY - ADAM FURMANEK

Summary

16.10.2022 LOCKS ARE TRICKY - ADAM FURMANEK

Summary

Avoid locks when possible but keep in mind they are there.

Keep your critical sections as short as possible.
Use built-in data structures.

Always use a timeout when taking a lock.

Keep in mind semaphores are nasty.

Don’t use locks in async.

16.10.2022 LOCKS ARE TRICKY - ADAM FURMANEK

Q&A

References

Joe Duffy - ,,Concurrent Programming on Windows”

Andrew S. Tanenbaum - ,,Structured Computer Organization”

Richard L. Sites - ,,Understanding Software Dynamics”

Maurice Herlihy, Nir Shavit - ,The Art. Of Multiprocessor Programming”
Joseph Albahari - ,Threading in C#”

Sasha Goldshtein, Dima Zurbalev, Ido Flatow -, Pro .NET Performance”

Stephen Toub - ,Patterns of Parallel Programming”

16.10.2022 LOCKS ARE TRICKY - ADAM FURMANEK 66

References

https://devblogs.microsoft.com/oldnewthing/20140905-00/?p=63 — File lock

https://itnext.io/reentrant-recursive-async-lock-is-impossible-in-c-e9593f4aa38a - Async lock

https://github.com/dotnet/wcf/blob/ce7428c2962e4ea4fce9c9c3e5999758a52bc4b9/src/Syste
m.Private.ServiceModel/src/Internals/System/Runtime/AsyncLock.cs - Async lock again

https://preshing.com/20120612/an-introduction-to-lock-free-programming/ - Lock free
programming

https://www.osr.com/nt-insider/2015-issue3/the-state-of-synchronization/ - Kernel locks

https://wiki.c2.com/?ActorVsAgent — Actors and agents

https://blog.adamfurmanek.pl/2018/04/28/concurrency-part-1/ - my series about concurrency

16.10.2022 LOCKS ARE TRICKY - ADAM FURMANEK

https://devblogs.microsoft.com/oldnewthing/20140905-00/?p=63
https://itnext.io/reentrant-recursive-async-lock-is-impossible-in-c-e9593f4aa38a
https://github.com/dotnet/wcf/blob/ce7428c2962e4ea4fce9c9c3e5999758a52bc4b9/src/System.Private.ServiceModel/src/Internals/System/Runtime/AsyncLock.cs
https://preshing.com/20120612/an-introduction-to-lock-free-programming/
https://www.osr.com/nt-insider/2015-issue3/the-state-of-synchronization/
https://wiki.c2.com/?ActorVsAgent
https://blog.adamfurmanek.pl/2018/04/28/concurrency-part-1/

Event Sponsors

Strategic Sponsors

&5 avanade +Relativity

Gold Sponsors
HITACHI

N-X gy MKMD T

An NEC Company

<vplech/> scaLc®

®Hitachi Energy

Silver Sponsors

SOfteSCM I!;! grupa pracuj

Please rate this session using

3

¢

.NET DeveloperDays mobile app

(available on Google Play and AppStore)

Random IT Utensils

Thanks!

CONTACT@ADAMFURMANEK.PL
HTTP://BLOG.ADAMFURMANEK.PL
FURMANEKADAM

16.10.2022 LOCKS ARE TRICKY - ADAM FURMANEK

http://blog.adamfurmanek.pl/
https://twitter.com/furmanekadam

