
Locks are tricky

Adam Furmanek





About me

Software Engineer, Blogger, Book
Writer, Public Speaker.
Author of Applied Integer Linear
Programming and .NET Internals
Cookbook.

http://blog.adamfurmanek.pl

contact@adamfurmanek.pl

furmanekadam

16.10.2022 LOCKS ARE TRICKY - ADAM FURMANEK 3

http://blog.adamfurmanek.pl/
mailto:contact@adamfurmanek.pl
https://twitter.com/furmanekadam


Agenda
General concepts.

Real life scenarios.

Algorithms.

Custom implementations.

Summary.

16.10.2022 LOCKS ARE TRICKY - ADAM FURMANEK 4



General concepts

16.10.2022 LOCKS ARE TRICKY - ADAM FURMANEK 5



Concurrency vs Parallelism
CONCURRENCY

Ability to decompose an application into
multiple parts.

Each part can be executed out-of-order
without affecting the final outcome.

Think of controling an access to a resource.

Concurrent execution is possible on a single-
core machine.

PARALLELISM

Ability to execute multiple things at once.

Requires multiple execution units.

16.10.2022 LOCKS ARE TRICKY - ADAM FURMANEK 6



Examples

Parallel Not Parallel

Concurrent
True concurrent code
with multiple cores

Single core with 
context switching

Not Concurrent Bit level parallelism Batch processing

16.10.2022 LOCKS ARE TRICKY - ADAM FURMANEK 7



Shared memory vs Message passing
SHARED MEMORY

When multiple execution units
access the same physical memory.

Prone to word tearing, false
sharing.

Requires critical sections or test-
and-set operations.

Cannot be used between machines.

Can be faster.

MESSAGE PASSING

When multiple execution units send
messages to each other.

Requires some way means of
communication – like storage,
queue etc.

Can be used between machines.

Typically slower.

16.10.2022 LOCKS ARE TRICKY - ADAM FURMANEK 8



Shared memory issues
Lost write

◦ variable++

Word tearing
◦ When we cannot access a single element and need to write multiple of them at once (like with bitset)

Atomic write
◦ When we cannot write a particular value at once (like with 64-bit variables on a 32-bit CPU)

How can we deal with this?

16.10.2022 LOCKS ARE TRICKY - ADAM FURMANEK 9



Critical section
Code which can be executed by one execution unit at a
time.

Cannot be parallelized.

Should finish in a finite time.

Should be as small as possible.

What do we do if a process dies while executing a critical
section?

16.10.2022 LOCKS ARE TRICKY - ADAM FURMANEK 10



Mutex
Name comes from Mutual Exclusion.

Can be implemented with disabling interrupts in a single-processor
system.

Requires some atomic operation a multi-processor system like test-and-
set or compare-and-swap.

Can be implemented in the kernel or user mode.

Typically provded by the operating system.

Can be locked and unlocked only by the owner.

Typcially can be taken recursively.

16.10.2022 LOCKS ARE TRICKY - ADAM FURMANEK 11



Mutex
WINDOWS

WinAPI:
◦ CreateMutex

◦ WaitForSingleObject

◦ ReleaseMutex

Called Mutant internally.

LINUX

POSIX Threads (pthread):
◦ pthread_mutex_init

◦ pthread_mutex_lock

◦ pthread_mutex_unlock

Mostly implemented by Native Posix Thread
Library (NPTL).

Other implementations exist like musl.

16.10.2022 LOCKS ARE TRICKY - ADAM FURMANEK 12

.NET: Mutex



Counting Semaphore
Counts execution units allowed to enter the section.

Two operations:
◦ V (increment) – comes from Dutch verhogen

◦ P (decrement) – comes from Dutch proberen/passeren/pakken

Can be unlocked by any thread, not only the „owning” ones.

What’s the difference between a binary semaphore (counting up to one) and a mutex?

16.10.2022 LOCKS ARE TRICKY - ADAM FURMANEK 13



Mutex vs Binary semaphore
MUTEX

Can be unlocked by the owner only.

Can protect the owner from termination.

Supports priority inversion as we know who
owns the mutex.

Allows for recursion.

Can notify when it is abandoned.

BINARY SEMAPHORE

Can be unlocked by anyone.

Doesn’t protect from termination as the
owner is not tracked.

Doesn’t support priority inversion as the
owner is not tracked.

Doesn’t support recursion.

Doesn’t notify when it is abandoned.

16.10.2022 LOCKS ARE TRICKY - ADAM FURMANEK 14



Counting Semaphore
WinAPI:
◦ CreateSemaphore

◦ WaitForSingleObject

◦ ReleaseSemaphore

POSIX Threads (pthread):
◦ sem_init

◦ sem_wait

◦ sem_post

.NET:
◦ Semaphore

◦ SemaphoreSlim

16.10.2022 LOCKS ARE TRICKY - ADAM FURMANEK 15



Sleep vs Spin wait
SLEEP

Entering the sleep mode is expensive for the
operating system

◦ Typically requires switching to a kernel mode
◦ Requires some kernel structures

Entering the slep mode is expensive for the
application

◦ Causes a context switch so consumes time

Doesn’t block the thread.

Cannot be done in all circumstances.

SPIN WAIT

Can be done in all circumstances.

Blocks the thread so it’s very CPU
consuming.

Is often used initially when we expect
the critical section to be released soon.

Very important in kernel programming.

16.10.2022 LOCKS ARE TRICKY - ADAM FURMANEK 16



Monitor with condition variable
Mutual exclusion is not enough. Often we
need to wait until some condition holds true.

Question remains: how do we wait for the
condition to hold?

If we don’t sleep then we hog the CPU.

If we do sleep then it’s hard to find the right
delay.

Condition variable is a set of threads waiting
for the condition to hold.

Monitor is a thread-safe construct using
mutex and condition variables to protect its
methods.

16.10.2022 LOCKS ARE TRICKY - ADAM FURMANEK 17



Condition variable
WinAPI:

◦ InitializeConditionVariable

◦ SleepConditionVariableCS

◦ WakeConditionVariable

POSIX Threads (pthread):
◦ pthread_cond_init

◦ pthread_cond_wait

◦ pthread_cond_signal

.NET:
◦ Monitor.Pulse + Monitor.Wait

◦ ReaderWriterLock

16.10.2022 LOCKS ARE TRICKY - ADAM FURMANEK 18



Spurious wake-up
We may be woken up by Monitor.PulseAll.

We may be woken up by the the driver or APC.

We always need to use loop.

16.10.2022 LOCKS ARE TRICKY - ADAM FURMANEK 19



Local vs global
LOCAL LOCKS

Are held within one process only.

Are typically faster.

Can be implemented in user-mode.

GLOBAL LOCKS

Are held between processes.

Require a support from the operating system.

Need to be identified somehow – typically by
name. Watch for collisions!

Are slower due to switching to the kernel
mode.

16.10.2022 LOCKS ARE TRICKY - ADAM FURMANEK 20



Truly global locks
We need inter-machine locks.

They are typically implemented as leases with a timeout.

They must be discoverable – typically by name or some resource.

They require network communication so are much slower.

16.10.2022 LOCKS ARE TRICKY - ADAM FURMANEK 21



Issues with locks
What if a thread dies? Are we sure the data is safe?

What if it used a semaphore? How do we reset the counter? How do we get notification?

What if it was an inter-machine lock? What about timeout?

What about priority inversion?

How can we see who holds the lock?

How can we take the lock forcefully?

Always acquire a lock with a timeout!

16.10.2022 LOCKS ARE TRICKY - ADAM FURMANEK 22



Compare-and-swap
Atomically compares the contents of memory
with a given value, and modifies the memory if
allowed.

16.10.2022 LOCKS ARE TRICKY - ADAM FURMANEK 23

x86:
◦ CMPXCHG

ARM:
◦ CAS

C++:
◦ atomic_compare_exchange_weak

.NET:
◦ Interlocked.CompareExchange

JVM:
◦ AtomicInteger.compareAndSet



Real life scenarios

16.10.2022 LOCKS ARE TRICKY - ADAM FURMANEK 24



Finalizers
Finalizers may be executed when exiting
◦ This is implementation-dependent and unreliable

Finalizers may be executed in paralel. They may be locked or not.

Finalizing thread cannot run indefinitely. It will be terminated if it 
takes too long. 

Finalizer may be called when the variable is still being used.

16.10.2022 LOCKS ARE TRICKY - ADAM FURMANEK 25



16.10.2022 LOCKS ARE TRICKY - ADAM FURMANEK 26



16.10.2022 LOCKS ARE TRICKY - ADAM FURMANEK 27



16.10.2022 LOCKS ARE TRICKY - ADAM FURMANEK 28



Common wrong pattern:
Acquire outside of try
First, take the lock.

Then, enter the try block.

Release the lock in finally.

But what if there was something
wrong between acquiring the lock and
entering the try block?

16.10.2022 LOCKS ARE TRICKY - ADAM FURMANEK 29



Common wrong pattern:
double-checked-lock
Invalid, because helper may be already set,
but new Helper() may be still running (due to
memory reordering).

Use:
◦ VarHandle (JVM)

◦ Lazy (.NET)

◦ call_once (C++)

16.10.2022 LOCKS ARE TRICKY - ADAM FURMANEK 30



Heap lock
Multiple malloc implementations lock the heap when allocating
memory.

So there can be a lock taken when calling new object().

If a thread dies for any reason – the lock is abandoned, and the heap
may be broken.

Don’t kill threads! Don’t suspend threads!

16.10.2022 LOCKS ARE TRICKY - ADAM FURMANEK 31



DLLMain lock
When a new module is loaded into the process, a
lock is taken.

DLLMain function is effectively executed in a critical
section.

This often leads to deadlocks. Especially when doing
a dll-injection.

16.10.2022 LOCKS ARE TRICKY - ADAM FURMANEK 32



fork without exec
When you fork a proces, only the calling thread runs in the 
child.

If some other thread held a lock, the lock remains locked
forever.

fork without exec is popular for multiprocessing libraries.

Always use fork + exec in your code.

Never call anything between fork and exec. Even malloc can
cause a deadlock.

16.10.2022 LOCKS ARE TRICKY - ADAM FURMANEK 33



APC
Asynchronous Procedure Call is a
mechanism to deliver a message to a
thread.

When taking a lock (like mutex), we need
to disable APC. Otherwise, we risk a
deadlock.

However, different locking primitives
disable different APC types.

Asynchronous I/O may use APC for
delivering a result. But it may also use
I/O completion port. Make sure you wait
on a correct primitve.

Message pump is not an alertable state,
and doesn’t proces APCs.

16.10.2022 LOCKS ARE TRICKY - ADAM FURMANEK 34

https://www.osr.com/nt-insider/2015-issue3/the-state-of-synchronization/



Drivers
Windows cannot risk breaking a physical device.

If there is a buggy driver, then Windows won’t try
killing it forcefully.

If a process waits for a buggy driver then the process
cannot be killed.

You need to restart your computer to solve the issue.

Or use ProcessHacker, but it can crash the machine.

16.10.2022 LOCKS ARE TRICKY - ADAM FURMANEK 35



Kernel-mode locks
We may be forced to use spin-based locks
depending on the IRQL level.

Spin-based locks do not support recursion.

What about reader/writer semantics?

Fairness? Contention?

16.10.2022 LOCKS ARE TRICKY - ADAM FURMANEK 36

https://www.osr.com/nt-insider/2015-issue3/the-state-of-synchronization/



Interrupt Request Level (IRQL)
When there is an interrupt, the operating
system maps it to the correct priority level.

Higher levels preempt lower ones.

Interesting levels:
◦ 0: PASSIVE_LEVEL – „regular” one, all Windows

components are available. All synchronization
primitives work

◦ 2: DISPATCH_LEVEL – for DPC and some drivers,
not all components are available. Thread
scheduler runs here. Only spin locks can be used

◦ 12: SYNCH_LEVEL – for synchronizing data
between CPUs

16.10.2022 LOCKS ARE TRICKY - ADAM FURMANEK 37



MS SQL
LATCH

Low-level locks used to maintain
the memory consistency.

Protect b-trees, heaps, pages.

Buffer latches, non-buffer
latches, IO latches.

Cannot be controlled directly by
the user.

LOCK

Used to maintain the transaction
consistency.

Can be controlled directly by the
user with query hints.

Affect results of queries – dirty
reads, phantoms, snapshots.

What is your default isolation
level?

16.10.2022 LOCKS ARE TRICKY - ADAM FURMANEK 38



Cloud leases
Azure Blob Lease.

Azure Queue Lease.

Azure Service Bus Lock.

Zookeeper locks.

Similar idea: network timeouts.

What happens if you don’t refresh the lease?

16.10.2022 LOCKS ARE TRICKY - ADAM FURMANEK 39



Logical transaction locks
Ever tried buying a ticket just to see that you need to
confirm the transaction in 15 minutes?

How do we scale them?

How do we make sure that we don’t overbook?

Is overbooking a problem?

What to do if one ticket can be sold by multiple vendors?

16.10.2022 LOCKS ARE TRICKY - ADAM FURMANEK 40



Algorithms

16.10.2022 LOCKS ARE TRICKY - ADAM FURMANEK 41



Dekker’s Algorithm

16.10.2022 LOCKS ARE TRICKY - ADAM FURMANEK 42

First known
algorithm.

Works for 2 
processes only.

Uses busy-wait.

Requires memory
barriers or code
reordering
disabled.



Peterson’s algorithm
Works for N processes.

Requires memory barriers or code
reordering disabled.

There are other algorithms:
Szymański’s, Lamport’s bakery,
Eisenberg & McGuire etc. They
have favorable properties like
fairness, linear wait etc.

16.10.2022 LOCKS ARE TRICKY - ADAM FURMANEK 43



How to reason about
locks?
Multiple models:

◦ Petri nets

◦ Calculus of communicating systems (CCS)

◦ Communicating sequential processes (CSP)

◦ Π-calculus

◦ Tuple spaces

◦ Parallel random-access-machine (PRAM)

◦ Actor model

Temporal logic of actions (TLA+):
◦ Formal specification language used to design

concurrent and distributed systems

◦ IDE and PlusCal language

16.10.2022 LOCKS ARE TRICKY - ADAM FURMANEK 44

https://github.com/exactly-once/model-checking/blob/15b007f5ce403f1e4f8bd0a52bf73abee9085570/exactly_once_none_atomic.tla



Caches and memory models
Starting with IBM 801 in 1976 CPUs have
caches.

They can be of multiple levels (L1, L2, L3) or
purpose (data, instructions).

Each read from or write to a main memory
goes to cache and only then accesses the
RAM.

Typically, each core has its own L1 cache.

We need to take care when writing to a
variable used by multiple cores concurrently –
volatile, memory barriers, cache flush.

CPU is allowed to reorder instructions – this is
called a memory model.

Compiler is allowed to do the same.

We can’t rely on a memory being read/written
in the same order as we see in the source
code.

We need to take care when using variables
outside of any synchronization primitives,
barriers, locks, etc.

16.10.2022 LOCKS ARE TRICKY - ADAM FURMANEK 45



MESI (Illinois) protocol
Protocol for maintaing cache coherence.

4 states:
◦ Modified (M)

◦ Exclusive (E)

◦ Shared (S)

◦ Invalid (I)

When CPU1 read data which is modified in CPU2’s cache line then we need to synchronize this
situation. Data is flushed to the main memory (that’s a great simplification but gives an idea how
it works).

volatile — this makes sure that the variable is not cached, but read directly from the memory
instead.

16.10.2022 LOCKS ARE TRICKY - ADAM FURMANEK 46



False sharing
Cache consists of memory lines, for
instance 64-byte long.

When we try accessing two elements
on the same cache line then we
share the memory.

16.10.2022 LOCKS ARE TRICKY - ADAM FURMANEK 47



Loop interchange
Both code snippets do the same.

They access elements in different order.

Which one is better – depends on your
language!

Row-major is better in C. Column-major is
better in FORTRAN.

It’s all about caching.

16.10.2022 LOCKS ARE TRICKY - ADAM FURMANEK 48



Matrix multiplication:
ijk vs ikj

The order matters when
we multiply matrixes.

It’s typically assumed that
ijk order (snippet on the
left) is slower.

ikj order is faster because
the compiler can
optimize the code.

It’s all about caching.

16.10.2022 LOCKS ARE TRICKY - ADAM FURMANEK 49



Producer-consumer
BlockingCollection in .NET.

Task.Run in .NET.

ExecutorService in Java.

Scatter + Gather in MPI.

Barrier in MPI.

Generally – avoid building those primitives by hand.

16.10.2022 LOCKS ARE TRICKY - ADAM FURMANEK 50



Other solutions
OpenMP:

◦ A library for multi-platform shared memory
programming

MPI:
◦ Standard for passing messages

◦ MPI_Send, MPI_Recv, MPI_Scatter, MPI_Barrier

◦ MPI.NET

Actors:
◦ Actor has an interface and messaging

capabilities

◦ Akka.NET

Agents:
◦ Can observe the environment

◦ Agents.NET

COM:
◦ Binary interface for software components

◦ Supports multiple apartments for threading
(STA, MTA, NA)

16.10.2022 LOCKS ARE TRICKY - ADAM FURMANEK 51



Lock free code
Avoid locks and use test-and-set, compare-
and-swap, or interlocked operations.

Multiple problems like ABA, memory
reordering, starvation etc.

Typical approach is based on moving a single
step – instead of fixing the whole data
structure, we adjust it by just a bit at a time.

Requires memory barriers.

16.10.2022 LOCKS ARE TRICKY - ADAM FURMANEK 52

https://preshing.com/20120612/an-introduction-to-lock-free-programming/



What about async?
It’s not about concurrency nor parallelism. It’s about optimizing the
resource usage under the hood.

It may spawn additional threads, but can also use one thread for all
code blocks.

Code may migrate between threads, so there is no proper locks
semantic.

Typically implemented as a coroutine transformation (C#, JS,
Python), but can be implemented as green threads as well (JVM).

16.10.2022 LOCKS ARE TRICKY - ADAM FURMANEK 53



Lock in async

16.10.2022 LOCKS ARE TRICKY - ADAM FURMANEK 54



16.10.2022 LOCKS ARE TRICKY - ADAM FURMANEK 55



Reentrant recursive
async lock
Reentrant recursive async lock
is possible but the reasoning
about it is much harder.

Rule of thumb: replace all your
awaits with threads and see if
it deadlocks.

16.10.2022 LOCKS ARE TRICKY - ADAM FURMANEK 56



Custom 
implementations

16.10.2022 LOCKS ARE TRICKY - ADAM FURMANEK 57



Semaphore with Mutexes

16.10.2022 LOCKS ARE TRICKY - ADAM FURMANEK 58



File locking

16.10.2022 LOCKS ARE TRICKY - ADAM FURMANEK 59

We can use files to implement a lock.

However, there is no fairness here and
we may need to spin-wait for the
access (depends on the runtime under
the hood).

May not work across file systems.



Mutex with ownership tracking
Windows Mutex doesn’t tell you who owns it (neither does pthread).

We want to wait for some finite amount of time and then kill the
owner because we assume it deadlocked or died.

We want to take a memory dump of the proces before killing it.

We want to be safe when it comes to access violation exceptions
which we cannot handle.

How do we know who to kill? How to implement such a lock?

16.10.2022 LOCKS ARE TRICKY - ADAM FURMANEK 60



Mutex with ownership tracking
We create a memory-mapped file which anyone can view.

We then perform compare-and-swap to store 64 bits: 32 bits for the process id, 32 bits for the
thread id.

When CAS fails, we look for the thread and see if it’s still alive. If it’s not then we just forcefully
clear the lock.

If the thread is alive and it held the lock for too long then we take a memory dump of it and kill
it.

We then forcefully clean the lock.

16.10.2022 LOCKS ARE TRICKY - ADAM FURMANEK 61



Challenges
No fairness.

Taking a memory dump is risky – it may block the process.

This is a spin-wait effectively so it hogs the CPU.

Ideally we should store 128 bits of data.

It doesn’t support reentrancy.

However, it’s successfully working in production for a couple of years now but it wasn’t
scientifically verified. Consider it a proof of concept.

16.10.2022 LOCKS ARE TRICKY - ADAM FURMANEK 62



Summary

16.10.2022 LOCKS ARE TRICKY - ADAM FURMANEK 63



Summary
Avoid locks when possible but keep in mind they are there.

Keep your critical sections as short as possible.

Use built-in data structures.

Always use a timeout when taking a lock.

Keep in mind semaphores are nasty.

Don’t use locks in async.

16.10.2022 LOCKS ARE TRICKY - ADAM FURMANEK 64



Q&A

16.10.2022 LOCKS ARE TRICKY - ADAM FURMANEK 65



References
Joe Duffy - „Concurrent Programming on Windows”

Andrew S. Tanenbaum - „Structured Computer Organization”

Richard L. Sites - „Understanding Software Dynamics”

Maurice Herlihy, Nir Shavit - „The Art. Of Multiprocessor Programming”

Joseph Albahari - „Threading in C#”

Sasha Goldshtein, Dima Zurbalev, Ido Flatow - „Pro .NET Performance”

Stephen Toub - „Patterns of Parallel Programming”

16.10.2022 LOCKS ARE TRICKY - ADAM FURMANEK 66



References
https://devblogs.microsoft.com/oldnewthing/20140905-00/?p=63 – File lock

https://itnext.io/reentrant-recursive-async-lock-is-impossible-in-c-e9593f4aa38a - Async lock

https://github.com/dotnet/wcf/blob/ce7428c2962e4ea4fce9c9c3e5999758a52bc4b9/src/Syste
m.Private.ServiceModel/src/Internals/System/Runtime/AsyncLock.cs - Async lock again

https://preshing.com/20120612/an-introduction-to-lock-free-programming/ - Lock free
programming

https://www.osr.com/nt-insider/2015-issue3/the-state-of-synchronization/ - Kernel locks

https://wiki.c2.com/?ActorVsAgent – Actors and agents

https://blog.adamfurmanek.pl/2018/04/28/concurrency-part-1/ - my series about concurrency

16.10.2022 LOCKS ARE TRICKY - ADAM FURMANEK 67

https://devblogs.microsoft.com/oldnewthing/20140905-00/?p=63
https://itnext.io/reentrant-recursive-async-lock-is-impossible-in-c-e9593f4aa38a
https://github.com/dotnet/wcf/blob/ce7428c2962e4ea4fce9c9c3e5999758a52bc4b9/src/System.Private.ServiceModel/src/Internals/System/Runtime/AsyncLock.cs
https://preshing.com/20120612/an-introduction-to-lock-free-programming/
https://www.osr.com/nt-insider/2015-issue3/the-state-of-synchronization/
https://wiki.c2.com/?ActorVsAgent
https://blog.adamfurmanek.pl/2018/04/28/concurrency-part-1/






Thanks!
CONTACT@ADAMFURMANEK.PL

HT TP://BLOG.ADAMFURMANEK.PL

FURMANEKADAM

16.10.2022 LOCKS ARE TRICKY - ADAM FURMANEK 70

http://blog.adamfurmanek.pl/
https://twitter.com/furmanekadam

